

STYRENES FROM DORSTENIA BARNIMIANA

YORDANOS WOLDU, BERHANU ABEGAZ, BRUNO BOTTA,* GIULIANO DELLE MONACHE* and
FRANCO DELLE MONACHE†

Department of Chemistry, Addis Ababa University, Addis Ababa, Ethiopia, *Centro Chimica dei Recettori del CNR, Università
Cattolica del S Cuore, Roma, Italy

(Revised received 14 July 1987)

Key Word Index—*Dorstenia barnimiana*, Moraceae, styrenes, benzofurans, bergaptene

Abstract—Three new styrenes have been isolated from *Dorstenia barnimiana* (Moraceae) and were assigned the structures 6-methoxy-5-vinylbenzofuran, 4,6-dimethoxy-5-vinylbenzofuran and 2,4-dimethoxystyrene

INTRODUCTION

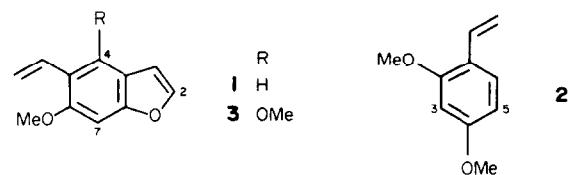
Dorstenia barnimiana is a seasonal African plant whose roots are used in folk medicine for skin diseases. In the literature only one paper [1] about the genus has described the isolation of steroids. This paper deals with the structure elucidation of three new styrenes isolated from the acetone extract of roots of the plant.

RESULTS AND DISCUSSION

Silica gel chromatography of the acetone extract of *Dorstenia barnimiana* afforded the three new compounds 1–3 together with bergaptene, glutinol [2] and β -amyrin acetate. Hydrogen and carbon counts from the NMR spectra and M^+ at *m/z* 174 in the mass spectrum indicated a molecular formula $C_{11}H_{10}O_2$ for compound 1. The 1H NMR spectrum showed the signals of a methoxy group, a vinylic side chain, two isolated aromatic protons and two furan protons. Cumulatively these data account for a benzofuran skeleton, which was also supported by the ^{13}C NMR spectrum, whose signals were in agreement with the literature [3]. The position of the substituents was established on consideration of the inter-ring coupling between the H-3 furan proton and the upfield aromatic proton (H-7) [4]. Compound 1 was thus assigned the structure of 6-methoxy-5-vinylbenzofuran.

Compound 3, $C_{12}H_{12}O_3$ (M^+ at *m/z* 204), displayed a very similar 1H NMR spectrum, only the signal of the H-4 proton of 1 being replaced by that of a second methoxy group. As a confirmation in the ^{13}C NMR spectrum of 3, only one of the methoxyl signals appeared at 60 ppm [5]. The comparison between the ^{13}C NMR spectra of 1 and 3 evidenced the downfield shift of the signal of C-4 and the upfield shifts of the resonances of C-3a, C-5 and C-7, as required for the introduction of the 4-methoxy group. Therefore compound 3 was assigned the structure of 4,6-dimethoxy-5-vinylbenzofuran.

The 1H NMR spectrum of compound 2, $C_{10}H_{12}O_2$ (M^+ at *m/z* 164), showed the signals for two methoxyls, a


vinylic side chain and three aromatic protons *ortho*-*ortho*-*meta* coupled. The substitution pattern of the aromatic ring was established when 2 was oxidized with IO_4^- / MnO_4^- to yield 2,4-dimethoxybenzaldehyde and its corresponding acid. Consequently compound 2 is 2,4-dimethoxystyrene.

Notably, metabolites 1 and 3 are the first examples of natural styrenes which contain a furan moiety. Compounds 1, 2 and 3 have been tested against the following microorganisms *Staphylococcus aureus*, *S. epidermidis*, *Streptococcus faecalis*, *Escherichia coli*, *Enterobacter cloacae*, *Klebsiella oxytoca*, *Proteus mirabilis*, *Pseudomonas aeruginosa*, *Acinetobacter* and *Candida albicans*, but they did not show any significant inhibitory activity.

EXPERIMENTAL

Plant material Roots of *Dorstenia barnimiana* Schweinf were collected in Ethiopia and a voucher sample (DB-86) is deposited at the Herbarium of Centro Chimica dei Recettori (Roma).

Extraction and fractionation Powdered air-dried roots (290 g) were extracted exhaustively with cold Me_2CO . Evapn of the Me_2CO gave a residue (26 g), which was dissolved in $MeOH$ – H_2O (9:1) and extracted several times with hexane. The pooled hexane extracts (21.5 g) were chromatographed on a silica gel column eluting with hexane– $EtOAc$ mixtures, to give several fractions, only two of which were further processed. The former on silica gel CC and prep TLC (CH_2Cl_2 –hexane, 9:1) afforded 1 (14 mg), 2 (195 mg), 3 (265 mg), β -amyrin acetate (80 mg) and lupeol acetate (traces). From the latter fraction mainly bergaptene (60 mg) and glutinol (25 mg) were obtained. The known compounds were identified by the spectral data and comparison (co-TLC, mmp) with authentic samples.

†Author to whom correspondence should be addressed

6-Methoxy-5-vinylbenzofuran (1) Oil, $C_{11}H_{10}O_3$ UV $\lambda_{\text{MeOH}}^{\text{MeOH}}$ nm (log ϵ) 246 (4.10), 311 (3.61), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹ 1625, 1610, 1580, 1430, 1300, 1210, 1150, 1090, ¹H NMR (CDCl₃) δ 7.50 (1H, d, J = 2 Hz, H-2), 6.60 (1H, br d, J = 2 Hz, H-3), 7.69 (1H, s, H-4), 7.00 (1H, br s, H-7), 7.40–6.90 (1H, m, A part of AX₂, H₂), 5.83–5.13 (2H, m, X₂ part of AX₂, H_β), 3.86 (3H, s, OMe), ¹³C NMR (CDCl₃) δ 155.7, 155.6 (C-6, C-7a), 144.2 (C-2), 132.3 (C-8), 123.8, 120.5 (C-3a, C-5), 118.3 (C-4), 113.5 (C-9), 106.4 (C-3), 94.5 (C-7), 55.9 (OMe), MS m/z (rel.int.) 174 [M]⁺ (100), 159 (31), 131 (37)

2,4-Dimethoxystyrene (2) Oil, $C_{10}H_{12}O_2$ UV $\lambda_{\text{MeOH}}^{\text{MeOH}}$ nm (log ϵ) 261 (4.00), 303 (3.64), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹ 1620, 1600, 1500, 1470, 1260, 1150, 1120, ¹H NMR (CDCl₃) δ 7.36 (1H, d, J = 8 Hz, H-6), 7.26–6.70 (1H, m, A part of AX₂, H₂), 6.46 (1H, dd, J = 8 Hz + 2 Hz, H-5), 6.40 (1H, d, J = 2 Hz, H-3), 5.73–5.00 (2H, m, X₂ part of AX₂, H_β), 3.76 (6H, s, 2xOMe), ¹³C NMR (CDCl₃) δ 160.6 (C-4), 157.9 (C-2), 131.3 (C-7), 127.3 (C-6), 112.2 (C-8), 104.8 (C-5), 98.4 (C-3), 55.5 (OMe), 55.4 (OMe), MS m/z (rel int.) 164 [M]⁺ (100), 149 (53)

Oxidation of 2 Compound **2** (110mg) in Me₂CO (3 ml) was added dropwise to a stirred soln of NaIO₄ (1.2 g) and KMnO₄ (47 mg) in H₂O (4 ml)–Me₂CO (8 ml). The mixture was stirred for 20 hr at room temp. Evapn of the Me₂CO and extraction with CHCl₃ gave a residue which on silica gel yielded 2,4-dimethoxybenzaldehyde (24 mg) and 2,4-dimethoxybenzoic acid (20 mg), identified by comparison with authentic samples

4,6-Dimethoxy-5-vinylbenzofuran (3) Oil, $C_{12}H_{12}O_3$ UV

$\lambda_{\text{MeOH}}^{\text{MeOH}}$ nm (log ϵ) 244 (4.54), 306 (3.47), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹ 1620, 1600, 1580, 1530, 1400, 1350, 1300, 1140, 1100, ¹H NMR (CDCl₃) δ 7.43 (1H, d, J = 2 Hz, H-2), 6.80 (1H, br d, J = 2 Hz, H-3), 6.76 (1H, br s, H-7), 7.23–6.70 (1H, m, A part of AX₂, H₂), 6.03–5.10 (2H, m, X₂ part of AX₂, H_β), 4.00, 3.86 (3H each, 2x s, 2x OMe), ¹³C NMR (CDCl₃) δ 157.1, 156 (C-7a, C-5), 151.9 (C-4), 142.7 (C-2), 127.7 (C-8), 117.5 (C-9), 113.8, 112.4 (C-5, C-3a), 104.6 (C-3), 90.0 (C-7), 60.0 (4-OMe), 55.9 (6-OMe), MS m/z (rel.int.) 204 [M]⁺ (100), 189 (68), 161 (44).

Acknowledgements—We thank Dr Luciano Polonelli and Dr Giulia Morace, Istituto di Microbiologia Università Cattolica del S Cuore (Roma), for antimicrobic essays. Thanks are also due to the Swedish Agency for Research Cooperation with Developing Countries (SAREC) for financial assistance and to Ato Hallelul Tebicke for his interest and encouragement

REFERENCES

- 1 Casagrande, C, Ronchetti, F and Russo, G (1974) *Tetrahedron* **30**, 3587
- 2 Taylor, D. A. H. (1967) *J. Chem. Soc.* 490.
- 3 Platzer, N, Besseler, J J and Demerseman, P (1974) *Bull Soc Chem (France)* **5–6**, 905
- 4 Elvidge, I. A. and Foster, B. G. (1963) *J. Chem. Soc.* 590.
- 5 Panichpol, K and Waterman, P G (1978) *Phytochemistry* **17**, 1363

PELARGONIDIN 3-(6"-SUCCINYL GLUCOSIDE)-5-GLUCOSIDE FROM PINK *CENTAUREA CYANUS* FLOWERS

KOSAKU TAKEDA, CHIYO KUMEGAWA, JEFFREY B HARBORNE* and RON SELF†

Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184, Japan, *Plant Science Laboratories, University of Reading, Reading, RG6 2AS, U.K., †Institute of Food Research, AFRC, Colney Lane, Norwich, NR4 7VA, U.K.

(Received 7 September 1987)

Key Word Index—*Centaurea cyanus*, Compositae, pink flowers, acylated anthocyanin, succinic acid

Abstract—A new anthocyanin acylated with succinic acid has been isolated from pink flowers of *Centaurea cyanus*. It has been identified as pelargonidin 3-(6"-succinylglucoside)-5-glucoside

While continuing our investigation of malonated and other acylated anthocyanins in plants of the Compositae [1], we found a new pigment in the pink flowers of a cultivated form of the corn poppy *Centaurea cyanus* L. The mutation from the usual blue colour to pink is probably controlled by a single gene [2]. The blue flowers were originally thought to contain cyanidin 3,5-diglucoside, but more recent work has shown that the

pigment is cyanidin 3-(6"-succinylglucoside)-5-glucoside, this was the first anthocyanin to be found in association with succinic acid [3, 4]. The same succinyl derivative was subsequently reported in six other *Centaurea* species [5] but a malonated cyanidin 3-glucoside was found to occur in leaves of *C. cyanus* and in cell cultures of the same plant [6].

The new pigment of the pink flowers is a pelargonidin